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Synopsis 

Synthetic polymer biomaterials being considered for cardiovascular applications must per- 
form under conditions of large cyclic deformations for long lifetimes. In designing with these 
materials and eventually qualifying them clinically, it would be extremely helpful to be able 
to predict the fatigue lifetimes accurately and reliably. In this article a calculational format 
is presented which predicts the lifetime distribution function for elastomeric sheets undergoing 
tension-tension fatigue. From a knowledge of the intrinsic tensile strength distribution and 
the effect of an “equivalent” edge flaw size on the tensile strength, the inherent flaw size 
distribution is determined. A tearing energy concept is utilized to determine the flaw growth 
law constants. Each of these three short-term tests provides a pair of constants which, taken 
together, permit calculation of the fatigue lifetime distribution. When compared using Kol- 
mogoroff statistics, experimental tensile-tensile fatigue results at 0.01 cps agreed well with 
the theoretically predicted lifetime distribution function. 

INTRODUCTION 
Synthetic polymer biomaterials are often asked to perform under con- 

ditiOns of large cyclic deformations for long lifetimes. Typical of such ap- 
plications are left ventricular assist (LVA) pump bladders, heart valve 
components, and vascular grafts. Two important clinical problems that 
could arise in the application of these materials are excessive creep and 
fatigue failure. Creep has been reported in Teflon vascular grafts,’ and 
fatigue cracking and failure is certainly an important design consideration 
in LVA pump bladders. In designing with these materials and eventually 
qualifying them for clinical usage, it is necessary to be able to predict the 
fatigue lifetimes accurately and reliably. To be sure, these materials must 
be biologically compatible; but even the most perfectly biocompatible ma- 
terial will not be qualified for structural use in humans unless its me- 
chanical longevity can be proven from an accurate data base. 

The nature of the fatigue problem is complicated by the statistical spread 
of cycles-to-failure data at any one stress level. If fatigue life is to be reliably 
predicted, the statistical nature of the failure must be examined. Curiously, 
there has not been much effort to do this for  polymer^,^^^ although fatigue 
laws involving two-parameter Weibull distributions have often been em- 
ployed in describing fatigue of metals and reinforced  plastic^.^ 

Usually, the problem of life prediction is treated in a deterministic way. 
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A crack growth law of the form 

dc 
dn 
- = A(AK)b 

or 

dc 
dn 
- = ATm 

is determined experimentally, and, since the parameters K and Tare known 
in terms of c, the crack length, the above equations are integrated between 
limits of c,, to c, where c, gives the critical crack size at which catastrophic 
failure occurs, and 0 to n, where n is lifetime in cycles. This has been the 
approach adopted in the studies on elastomersw and most investigations 
of plastics3 and reinforced  plastic^.^ This does not help in explaining the 
scatter observed in the lifetime of specimens which look exactly the same 
and are subjected to the same conditions. 

It is now an accepted fact that fatigue failure initiates at preexisting 
flaws. These flaws grow due to fatigue loading, and catastrophic failure 
takes place as the critical size is reached. Thus, knowing the distribution 
of initial flaw sizes and the fatigue law for flaw propagation, the distribution 
of flaw sizes after n cycles can be determined, and the probability of failure 
calculated. 

Experimentally, both the distribution of breaking strengths and the re- 
lationship between breaking strength and size of a critical flaw must first 
be found. Using this information, the distribution of initial flaw sizes can 
be determined. The flaw growth law is then characterized experimentally. 
Information from these three types of experiments is then used to obtain 
the fatigue lifetime distribution function. 

In the following the details of the theoretical approach are described and 
the predicted fatigue lifetime distributions compared with experimental 
data for a segmented polyetherurethane material. 

THEORETICAL DEVELOPMENT 

Initial Flaw Size 

Every solid body contains flaws as points of weakness due to hetero- 
geneities of composition or structure. In addition, because of the presence 
of sharp corners, nicks, cuts, scratches, and embedded dirt particles or other 
sharp inclusions, applied stresses are magnified in certain regions of the 
body so that they greatly exceed the mean applied stress. The failure process 
will begin at such a site where the local stress exceeds a critical level and 
the small flaw starts to grow as a microcrack. These initial flaw sizes will 
be different in different specimens in a given population, so different life- 
times will result for different specimens under fatigue conditions. It is 
necessary, then, to determine this flaw size distribution. For a semitran- 
sparent biomaterial, there are two possible approaches to do this. The first 
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and most obvious is to examine the specimen under an optical microscope 
and measure the size and shape of different flaws. The failure process should 
start at the largest and sharpest flaw but this may not always be true. 
There may be several different flaws present around a given flaw, and their 
stress fields will interact. Thus, the failure process may start from a small 
flaw around which there are several stress concentrators rather than from 
a larger flaw around which there are few other stress concentrators. 

Another way to measure flaws is to use a "hypothetical flaw concept." 
For brittle materials, the well-known Griffth relationship between break- 
ing strength and the size of an artificially introduced sharp flaw or crack 
is 

where c is the crack size and s is the surface energy. This relationship has 
been verified for metals, and for brittle polymers by Berry,7 although, in 
the case of polymers, s, the surface energy, has to be replaced by y, a 
characteristic energy. This equation has been assumed to be valid for elas- 
tomers also.l0 

It is, however, not necessary to use the above equation. As is shown below, 
a relationship can be derived between breaking stress and flaw size for 
elastomers by utilizing the tearing energy theory," which has been verified 
for several different e l a s t ~ m e r s . ~ ~ ~ ~ ~ J ~  Consider a specimen with an edge flaw 
of length c. The specimen when loaded will break at a critical value of 
tearing energy (T,), which is characteristic of the material, rate of tearing, 
and temperature. This T, is defined by 

T, = 2KUc (4) 

where K is a constant, which varies weakly with strain, U is the strain 

energy density defined by U = J: u de, and c is the flaw length; hence, 

Now, if u = Aen (a nonlinear stress strain relationship), it can easily be 
shown13 that 

where 

Tc M = a N  and a = 
(1/AYn * [l/(n+l)] * 2K 

For linear elastic material when n = 1, 
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which is the Griffith criteria. Since most elastomers have a nonlinear stress 
strain curve, eq. (6) should be used rather than the Griffith criteria. 

Equation (6) thus supplies a very simple means of determining the needed 
flaw size distribution. Various small sharp flaws can be introduced in spec- 
imens and the specimens then broken at a specified strain rate. Equation 
(6) will be satisfied if a straight line results upon plotting (+b vs. c on a log- 
log scale, and values of M and the exponent N may then be obtained. 

Subsequently, several more specimens can be broken at the same strain 
rate as before. Using eq. (61, the equivalent hypothetical flaw size does not 
necessarily correspond to any actual flaw size in the specimen, but may be 
thought of as that single flaw size which would have the same effect as 
multiple smaller interacting flaws. Thus, if the breaking strength distri- 
bution is known, the equivalent flaw size distribution in a given specimen’s 
population can be found using probability theory methods. 

Initial Flaw Size Distribution 

Let us assume that the probability distribution of breaking strengths is 
given by a normal distribution function 

where p and cr2 are the mean and variance of the distribution and c r b  is 
the breaking strength. To determine the probability distribution of flaw 
sizes in this population, eq. (6) and transformation of variables is used (see 
the Appendix) to obtain 

Thus, the distribution of hypothetical flaw sizes in a given specimen pop- 
ulation is obtained. A similar procedure can be used for any other distri- 
bution function. 

Flaw Growth 

Fatigue flaw growth in elastomers above a characteristic tearing energy 
To is correlated by an equation of the type 

dc 
dn 
- = ATb 

where A and b are constants depending on experimental conditions and 
the material. T, the tearing energy, is given for an edge crack by T = 2KUc 
where K is a numerical constant and U is the area under the stress-strain 
curve. Hence eq. (9) becomes 
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dn 
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(10) 
dc 
- = A ( 2 K W b d n  
Cb 

Integrating this equation between the limits co to c (initial flaw size and 
flaw size after n cycles, respectively) and 0 to n, where n is the number of 
cycles and z = A(2KU)Yb - l ) n  yields 

(11)  co = [z + C - ( b - l )  l / ( b - 1 )  I- 
Now eq. (8) gives the probability distribution of the initial crack sizes, ~0)s. 
So, the probability distribution of crack sizes after n cycles will be 

, c  . -.., (12) 
M \ I  I") expt 

Lifetime Distribution 

The distribution function f(cn) gives the probability distribution of flaws 
in specimens after n fatigue cycles under a given set of experimental con- 
ditions. The probability that a specimen will contain a flaw greater than 
the critical size, at which catastrophic failure takes place is given by 

where 

where a, is the critical flaw size. Thus, by calculating P,(f)  at various values 
of n and plotting P,(f)  vs. n, one can determine what the probability of 
failure is for a given specimen under given experimental conditions. 

A simplification can be introduced based on the assumption that the final 
length of the crack (i.e., the length when the specimen fails) is very much 
larger than the initial crack length, co < < c,. In this case eq. (11)  can be 
rewritten as 

From this equation, the probability distribution of fatigue lives can be de- 
rived directly. Equations (15) and (8) give the fatigue life distribution as 
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Thus, eq. (16) can provide the fatigue lifetime distribution functions under 
given experimental conditions without carrying out any fatigue tests at all, 
if the six constants (M, f l  p, a, A, b)  are known. 

EXPERIMENTAL 

Materials 

Experiments were carried out to verify the above procedure for elasto- 
meric biomaterials. The material used was Biomer, a segmented polyeth- 
erurethane polymerized by Ethicon, Inc. and centrifugally cast into 30-mil- 
thick sheets by Thoratec, Inc. 

The casting was accomplished by applying a 20 wt % solution of Biomer 
in N,N-dimethylacetamide (DMAC) to the inside of a rotating (544 rpm) 
aluminum cylinder closed at one end and lined with a 5-mil Mylar film. 
Filtered warm air was blown over the film to remove most of the DMAC, 
and the sheet then removed and the Mylar stripped off. The sheets were 
then dried for 2 h at 7WC, extracted in distilled water at 80°C for 4 h, and 
then vacuum-dried. Dog-bone specimens were punch-cut from these sheets 
with a hand mallet and die. The central narrow portion of the specimens 
was 1 in. long and 0.26 in. wide. The thickness of every specimen was 
measured at four places on the narrow portion. Only specimens with uni- 
form thickness (k0.25 mils) were used for the experiments. Two types of 
experiments were carried out at room temperature. First, determination 
of the tensile strength with and without a cut flaw in the specimens was 
carried out in an Instron testing machine. Second, fatigue and crack prop- 
agation experiments were carried out on an MTS electrohydraulic testing 
machine. Experimental procedures are described below in detail. 

Strength Determination without a Cut Flaw 

In an effort to determine the relationship between breaking strength and 
flaw size, several specimens were examined at about 1000 x magnification 
under an optical microscope. Flaws in the specimens were clearly visible 
and were mapped, including their shapes and sizes, for each specimen. These 
specimens were then broken in uniaxial tension in an Instron testing ma- 
chine at a crosshead speed of 5 in./min, using air-pressure grips with sand- 
paper faces. The place at which the specimen broke was marked on the 
map. The largest and sharpest flaw was then located in that region, and it 
was assumed that failure initiated at this flaw. A log-log plot of breaking 
strength vs. flaw size determined thus did not yield any correlation. It was 
then postulated that the actual flaw size cannot be used because of inter- 
acting stress fields from several nearby flaws, which apparently change the 
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effective flaw size. Nonetheless, these experiments, along with the con- 
trolled cut flaw tests, can yield sufficient information to obtain the effective 
flaw size distribution. 

Strength Determination with a Cut Flaw 

In these experiments, a small sharp edge cut was introduced halfway up 
the gage length of the specimen with the aid of an optical microscope. Care 
was taken to make sure that the cut was perpendicular to the side of the 
specimen and therefore had the same depth when measured from front or 
back. Cuts were introduced in several specimens, and the cut length was 
measured under an optical microscope with an accuracy of k12.2 pm, i.e., 
0.00048 in. These specimens were then broken in tension in an Instron 
testing machine at 5 in./min crosshead speed (5 in./in. . min-9. The break- 
ing strength was then plotted against cut length on log-log paper. 

Dynamic Tests 

The crack propagation and fatigue experiments were carried out on an 
MTS closed-loop electrohydraulic testing machine. The load range required 
in these experiments was from 5 to 15 lb. Since the machine was designed 
for use in much higher load ranges, and since the load cell used here was 
in the 0-50 lb range, it was extremely sensitive and picked up the machine 
frame vibrations which were transmitted to the controller affecting the 
actuator movement as unwanted feedback. To dampen these vibrations, a 
4-in. cubic block of wood was attached to the load frame, and the load cell 
was attached to this block through a foam packing spacer between the block 
and the frame. This arrangement made it possible to use the machine in 
load control without feedback noise. 

Flaw Propagation and the Tearing Energy Relation 

In order to examine the flaw growth law, a small, sharp edge cut was 
introduced in the specimen with a razor blade. The specimen was then 
mounted in sandpaper-lined grips of an MTS testing machine and stressed 
sinusoidally in tension. A traveling microscope was used to measure the 
length of the crack at various low numbers of cycles. For each particular 
frequency, experiments were done for at least four to five different maxi- 
mum stress levels. Frequencies of 1 cps, 0.1 cps, and 0.01 cps were used. 
Only the results of 0.01 cps are reported here because fatigue experiments 
were carried out at that frequency. 

The crack growth experiments provide part of the data needed for the 
plot of dcldn vs. T. Another problem encountered at this point involved 
calculation of V ,  the strain energy density which is needed to calculate the 
tearing energy T. The value of Uis equal to the area under the true stress- 
true strain curve. Now, for a given stress level (i.e., given extension) the 
flaw propagation or fatigue specimens clearly stretch at different rates when 
cycling at different frequencies. If the true stress-true strain curves change 
appreciably with extension rate, different stress-strain curves must be used 
for calculating U at different frequencies. 
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To study these rate effects, engineering stress-engineering strain curves 
were obtained on an Instron testing machine at 2,12, and 20 in./in. min-'. 
It was found that there was negligible difference between them, and so a 
single value of U was used for experiments done at different frequencies 
in this extension rate range. 

Fatigue Lifetimes 

Fatigue experiments were carried out at a frequency of 0.01 cps at 1556 
psi, 900 psi, and 750 psi maximum engineering stress and 0 psi minimum 
stress under cyclic sinusoidal conditions. Each stress level results in a dif- 
ferent value of V, and so a different distribution function of fatigue lifetimes 
will result at different stress levels. The predicted lifetime distribution 
function was compared with the experimental results for goodness of fit. 

RESULTS AND ANALYSIS 

The results are analyzed sequentially according to the development and 
utilization of the theory. Chronologically, one must first measure the in- 
trinsic breaking strength without an induced flaw and then the breaking 
strength with an induced flaw or cut. Next, the crack propagation law must 
be characterized, and finally, the fatigue lifetime predictions must be 
checked against the experimental fatigue results. 

Breaking Strength Distribution 

Table I shows the values of pristine breaking strengths obtained, arranged 
in increasing order for a particular lot of samples. First, the sample lot was 
tested using the x2 goodness of fit test to see if it was from a normal 
population. Maximum likelihood estimates were made for the sample mean 
p and standard deviation u and are shown in Table I. 

The data were then grouped into five different classes, the frequency of 
appearance of the data in each class was counted, and the theoretical prob- 
abilities were generated from standard normal distribution tables. The crit- 
ical X2 parameters were then calculated at a = 0.05 (95% confidence level). 
The calculations showed that there was no reason to reject the hypothesis 
that the breaking strength data follow a normal distribution with a mean 
p = 5874.58 and a standard deviation u = 199 psi. 

TABLE I 
Breaking Strengths without Cut (psi) for a Sample Set of 31 Specimens" 

n = 31 

5468, 5528, 5528, 5616, 5631, 5649, 5649, 5649, 5738, 5793, 
5835, 5835, 5889, 5906, 5906, 5921, 5937, 5937, 5937, 5937, 
5975, 5978, 5997, 6025, 6072, 6089, 6100, 6100, 6140, 6140, 
6207 

a p = mean = 587; u = standard deviation = 199. 
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Thus, the distribution of breaking strengths for this particular lot of uncut 
specimens may be written as 

where (Tb is the breaking strength. 

Dependence of Breaking Strength on Flaw Size 

The next step in developing the fatigue life prediction involves deter- 
mining what the breaking strength dependency is on the effective flaw size. 
Precision cuts were introduced, and specimens broken in tension. The re- 
sults of plotting these data on a log-log plot are shown in Figure 1 along 
with a least-squares-fit straight line. The values of constants M and N in 
the relationship 

were determined to be 

M = 608, n = 0.39 

Hence, the relation 

yields the particular flaw size effect on strength for this population of 
Biomer samples. Following the theoretical development explained earlier, 
the distribution of flaw sizes becomes 

3.2 
W 

3.01 I 8 1 1 1 
-2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 

LOG FLAW SIZE, INCHES 

Fig. 1. Correlation between breaking strength and flaw size utilizing eq. (6); M = 608, N 
= 0.39. 
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T R U E  STRAIN - 
Fig. 2. True stress vs. true strain curve. This curve is independent of the strain rate between 

2 and 20 min-1. 

Cut Growth Experiments-The Flaw Propagation Law 

The next step in generation of a fatigue lifetime distribution function 
involves determining how the flaws will grow to produce a critical size flaw 
which, in turn, produces failure. Flaw (cut) growth experiments were carried 
out as described before. It was found that a relationship of the type 

where T = 2KUc, correlates the results extremely well. 
The stressstrain curve shown in Figure 2 was used for calculation of the 

W 

- I  0 
10 15 2 0  2 5  

LOG TEARING ENERGY. (T) ( lbf / in )  

Fig. 3. Least squares fit of tearing energycrack growth law correlation at a frequency of 
0.01 cps. 



FATIGUE LIFETIME DISTRIBUTIONS 3051 

energy U. The relationship between cut growth rate and the tearing energy 
at 0.01 cps is shown in Figure 3. 

For 0.01 cps, the values of the crack growth law constants are 

A = 1.778 x lop8, b = 2.5 

Fatigue experiments were carried out at maximum stresses of 1556, 900, 
and 750 psi. Calculations of the predicted lifetime distribution function for 
each stress level are shown below. 

Lifetime Distribution Function 

The last step in the predictive format involves utilizing the information 
from the strength, the strength-with-a-flaw, and the crack propagation ex- 
periments to predict the fatigue lifetime distribution. These predictions for 
each of three maximum stress levels are summarized below for a frequency 
of 0.01 cps. 

1556 psi. From the crack-growth experiments, it is known that at this 
stress level 

K = 1.6, 

A = 1.778 x lo-*, 
b = 2.5 

U = 1208.3 lbf/in.2 

Substituting these values into eq. (16) along with the values for (+ and p 
as well as M and N, we obtain, 

which is the lifetime distribution function at 1556 psi. 

NUMBER OF CYCLES, n 

Fig. 4. Distribution function for uniaxial tensile fatigue lifetimes of Biomer sheet at a 
maximum sinusoidal stress of 1556 psi. 
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800 1000 1200 

NUMBER OF CYCLES, n 

Fig. 5. Distribution function for uniaxial tensile fatigue lifetimes of Biomer sheet at a 
maximum sinuoidal stress of 750 psi. 

900 psi. The values of A, b, a, p, M, and N are the same as before, K = 
1.65 and U = 790.8 lbf/in.o; hence 

750 psi. A, b, cr, p, M, and N are the same as before: K = 1.68 and U = 
663.3 lbf/in.2 Thus, 

0.5101 f ( n )  = - e-%(4.918n"2M) - 29.50)2 
n0.74 (21) 

Equations (19)-(21) thus give the predicted lifetime distributions for 1556, 
900, and 750 psi maximum stress levels, respectively. These distributions 
are plotted in Figures 4-6. 

n 
0 
X 

c - 
Y 
u- 

5 

NUMBER OF CYCLES, n 

Fig. 6. Distribution function for uniaxial tensile fatigue lifetimes of Biomer sheet at a 
maximum sinuoidal stress of 900 psi. 
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Fatigue Experiments 

Fatigue experiments were carried out to see whether the experimentally 
obtained values of fatigue lives fit the predicted distributions. Since com- 
pletely specified distribution functions are given by eqs. (19H2l), a Kol- 
mogoroff test of goodness-of-fit was used.14 This test is particularly 
applicable to a small number of samples. To apply the Kolmogoroff test, 
the sample cumulative distribution function (cdf), as well as the postulated 
distribution value, must be evaluated for each distinct observation. In com- 
paring the x2 test with the Kolmogoroff test, it is noteworthy that the latter 
is computationally simpler, does not lose information by grouping of data, 
and applies directly to small samples. On the other hand, the x2 test is 
applicable to a composite hypothesis (i.e., when parameters need to be es- 
timated from the data). 

The Kolmogoroff statistics test measures the maximum absolute deviation 
of the sample cdf from the corresponding value obtained from the postulated 
distribution function. Ten fatigue experiments were completed at 1556 psi 
maximum sinusoidal stress. Table I1 summarizes the Kolmogoroff statistical 
calculations. 

As can be seen from the results of Table 11, the maximum deviation is 
0.364. From the tables at a = 0.1 and N = 10 the critical value is 0.368. 
Since the highest value is less than the critical value, there is no reason 
to reject the hypothesis that-eq. (19) does describe the lifetime distribution 
at 1556 psi at a = 0.1 (90% confidence limit). The value of F(n) in the table 
is obtained by integrating eq. (19) within the limits 0 to x, where x is the 
value of the lifetime. The integration was done using a 16-point Gauss- 
Legendre quadrature format on a programmable H-P calculator. 

A similar analysis was done at 900 psi and 750 psi and the results showed 
that eqs. (20) and (21) do indeed describe the fatigue lifetime distribution 
functions at a = 0.1. 

TABLE I1 
Summary of Kolmogoroff Statistical Test Calculations 

Absolute 
deviation 

Cumulative Sample F(n) - 
Observed Frequency frequency cdf sample 

Class value n, n, BnJn F(n) cdf 

1 114 
2 146 
3 168 
4 195 
5 221 
6 279 
7 287 
8 331 
9 377 
10 478 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

3.183 x 
0.00007 
0.00216 
0.03588 
0.18822 
0.81718 
0.87073 
0.98969 
1.00055 
1.00085 

10-6 0.1 
0.19993 
0.29784 
0.36412 
0.31178 
0.21718 
0.17073 
0.18969 
0.10055 
0.00085 
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CONCLUSIONS 
1. A format has been developed to predict the fatigue lifetime distribution 

function of an elastomeric biomaterial from short-term experimental data. 
At  a confidence level of 90%, the predicted lifetime distributions adequately 
describe the limited experimental data as measured by the Kolmogoroff 
statistical test. 

2. Three types of experiments have to be done before the distribution 
function can be estimated; these are (1) breaking strength experiments with 
a cut in the specimen, (2) breaking strength experiments without a cut in 
the specimen, and (3) flaw growth experiments. Each type of experiment 
gives a pair of constants; thus six experimentally determined constants are 
required for obtaining the distribution function. 

We are grateful for the support of this work by the National Heart, Lung, and Blood Institute, 
Division of Heart and Vascular Diseases, Devices and Technology Branch Under Contract No. 
NO 1-HV-029 10. 

APPENDIX: INITIAL FLAW SIZE DISTRIBUTION 
Let us assume that the probability distribution of breaking strengths is given by a normal 

distribution function 

A u d  = - [ $:")I uv?zexp - - (22) 

where p and u2 are the mean and variance of the distribution and ub is the breaking strength. 
To determine the probability distribution of flaw sizes in this population using eq. (6), the 
following theorem in probability theory is used. 

Theorem: If X is a continuous random variable with a probability distribution function A x )  
and Y = u ( X )  defines a one-to-one correspondence between the values of X and Y,  so that 
equation y = u(z) can be uniquely solved for z in terms of y, say, z = wb), then the probability 
distribution of Y is 

where IJI= w'(YY) and is called the Jacobian of the transformation. 

of flaw sizes becomes 
Let us write eq. (6) as u6 = M / P .  Then, using the above theorem, the probability distribution 

where 

MN 
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so that 

Thus, the distribution of hypothetical flaw sizes in a given specimen population is obtained. 
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